Distribution matching and structure preservation for domain adaptation

نویسندگان

چکیده

Abstract Cross-domain classification refers to completing the corresponding task in a target domain which lacks label information, by exploring useful knowledge related source but with different data distribution. Domain adaptation can deal such cross-domain classification, reducing divergence of domains and transferring relevant from target. To mine discriminant information samples geometric structure domains, thus improve performance, this paper proposes novel method involving distribution matching preservation for (DMSP). First, it aligns subspaces on Grassmann manifold; learns non-distorted embedded feature representations two domains. Second, space, empirical risk minimization regularization intra-domain graph is used learn an adaptive classifier, further adapting Finally, we perform extensive experiments widely datasets validate superiority DMSP. The average accuracy DMSP these highest compared several state-of-the-art methods.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distribution-Matching Embedding for Visual Domain Adaptation

Domain-invariant representations are key to addressing the domain shift problem where the training and test examples follow different distributions. Existing techniques that have attempted to match the distributions of the source and target domains typically compare these distributions in the original feature space. This space, however, may not be directly suitable for such a comparison, since ...

متن کامل

Joint Feature Selection and Structure Preservation for Domain Adaptation

The essence of domain adaptation is to explore common latent factors shared by the involved domains. These factors can be specific features or geometric structures. Most of previous methods exploit either the shared features or the shared geometric structures separately. However, the two strategies are complementary with each other and jointly exploring them is more optimal. This paper proposes...

متن کامل

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

Semi-Supervised Kernel Matching for Domain Adaptation

In this paper, we propose a semi-supervised kernel matching method to address domain adaptation problems where the source distribution substantially differs from the target distribution. Specifically, we learn a prediction function on the labeled source data while mapping the target data points to similar source data points by matching the target kernel matrix to a submatrix of the source kerne...

متن کامل

Subspace Distribution Alignment for Unsupervised Domain Adaptation

We propose a novel method for unsupervised domain adaptation. Traditional machine learning algorithms often fail to generalize to new input distributions, causing reduced accuracy. Domain adaptation attempts to compensate for the performance degradation by transferring and adapting source knowledge to target domain. Existing unsupervised methods project domains into a lower-dimensional space an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complex & Intelligent Systems

سال: 2022

ISSN: ['2198-6053', '2199-4536']

DOI: https://doi.org/10.1007/s40747-022-00887-3